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Abstract

Mass transport in pulsating flow devices using either moving boundaries or oscillating imposed pressure drops are

compared with each other by means of a calculation using a simple model. We conclude that there is no difference

between the two configurations as long as one is interested only in the power required to move the fluid for the con-

vective mass transport achieved. However, the boundary driven configuration is more efficient if the power is divided by

the total mass transport where both the diffusive and convective parts are taken into account, the boundary driven

configuration is more efficient. The amplitude of the piston stroke in the pressure driven configuration and the am-

plitude in the boundary driven case are assumed to be the same, and the inertia of the moving devices themselves are

ignored in this calculation. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known [1–4] that the mass transfer of a

species is enhanced by several orders of magnitude when

it is present in a fluid medium that is subject to oscilla-

tory motion. This enhancement takes place even if there

is no net total flow over a cycle of the oscillation. The

physics of enhanced mass transfer is explained clearly

by Thomas and Narayanan [4] .

Now, it turns out that there are several ways to in-

duce oscillatory flow. For example, the tube walls may

be oscillated or an oscillating pressure drop may be

imposed. In what follows, an analysis is provided to

show the differences and to point out the similarities

between a configuration driven by an oscillating piston

and one by oscillating boundaries. The mass transfer is

then calculated and shown to vary between the two

cases. Another important parameter that is calculated

for each periodic configuration will be the power re-

quired to drive the flow. This will then allow a com-

parison of the power required for the mass transfer

produced by each method.

2. Pressure and boundary driven mass transfer

The physical model is one where a channel of spacing

h and length L separates two tanks containing a species

in a dilute amount in a carrier gas. The concentrations in

the tanks are taken to be c2 and c1. In the pressure

driven case the oscillatory motion is induced in the fluid

in the channel by an oscillating piston with amplitude

A. 1 If x is the flow direction and y is transverse to it,

then from the equation of motion for a Newtonian fluid

in fully developed flow, the axial component of velocity

in the simplified case of periodic flow of frequency x in a

two-dimensional channel is given by

Vx ¼ 2R eVVxe
�ixt

� �
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where R is the real part of the argument and where

eVVx ¼
1
4
Ax eWW

ð eWW � 2ÞeeWW � ð eWW þ 2Þe�eWW þ 4

� e�
eWW��
� 1

�
e
eWW y� þ 1

�
� e
eWW �e�eWW y� þ e

eWW � e�
eWW �
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with y� ¼ y=h and eWW ¼ ði� 1ÞW . The Womersley

number W is defined as W � h x=2mð Þ1=2. Note that the
Womersley number has a

ffiffiffi
2

p
in the denominator;

therefore, it may be different than the definition of the

Womersley number of previous authors.

The concentration field c can be found by solving the

species continuity equation and is of the form

c ¼ ðc2 � c1Þx
L

þ 2R ĉcðyÞeixt
n o

where

Here, bWW ¼ ðiþ 1ÞW and is the conjugate of eWW while the

Schmidt number is Sc � m=D. The term ðc2 � c1Þ=L is the
mean axial concentration gradient. In deriving the total

mass transfer, eVVx and ĉc may be re-expressed as

eVVx ¼
1

4
Ax w1e

eWW y�
�

þ w2e
�eWW y� þ w3

�
ĉc ¼ 1

4
A
ðc2 � c1Þ

L

� u1e
�bWW ffiffiffi

Sc
p

y�
�

þ u2e
bWW ffiffiffi

Sc
p

y� þ u3e
�bWW y� þ u4e

bWW y� þ u5

�
where the w’s and /’s are all constants depending on the
parameters of the system (D, x, m, and h) written this

time in terms of the Womersley and Schmidt numbers

and where the expressions for the w’s and /’s can be
derived upon inspection of eVVx and ĉc from the above

equations. The total time and space averaged mass

transfer is defined by

Nomenclature

A peak-to-peak amplitude

c concentration field

D diffusion coefficient (cm2/s)

h channel width (cm)

i
ffiffiffiffiffiffiffi
�1

p

L length of channel (cm)

P pressure

Q time- and space-averaged mass transfer

(mol/cm2 s)

Sc Schmidt number
m
D

t time (s)

Vx axial velocity (cm/s)

W Womersley number h
ffiffiffiffiffi
x
2m

r
x axial coordinate

y transverse coordinate

Greek symbols

b constant in equation for velocity

g constant in equation for concentration

u constant in equation for concentration

l fluid’s dynamic viscosity (g/cm s)

m fluid kinematic viscosity l=q (cm2/s)

x oscillation frequency (rad/s)

w constant in equation for velocity

Superscripts

^, � complex conjugates, moving reference

� dimensionless variable

–– time averaged

Subscripts

1 left reservoir

2 right reservoir

wall property at the boundary

conv convective portion only

total diffusive and convective portions
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Q ¼ �Dðc2 � c1Þ
L

þ x
2p

Z 2p=x

0

Z 1

0

eVVxĉcdy� dt

This then gives
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The above expression is divided by �Dðc2 � c1Þ=L,
which is the average diffusive mass transfer, to give the

non-dimensional expression for the total mass transfer.

This dimensionless form of the mass transfer is now only

dependent upon the Womersley number (W), the Sch-

midt number (Sc), and the ratio of the piston amplitude

to the distance between the plates (A/h). This is a well-

known result and similar forms of pressure driven mass

transfer can be found in the literature [1–4] .

Before proceeding to the analysis of the power re-

quired to drive the flow, it is noted that

1

l
DP
L

¼ 2R ePP e�ixt
� �

ð3Þ

and therefore eVVx must be homogeneously dependent

upon the pressure term, ePP . Likewise, the complex con-
jugate of eVVx, viz. bVVx, depends homogeneously upon bPP ,
the conjugate of ePP . As the velocity is the inhomogeneous
term in the species conservation equation, ĉc and ~cc must
also be homogeneous in bPP and ePP respectively. This will

make the convective part of the mass transfer depend

quadratically upon pressure, i.e. ePP�� ��2, and when the

pressure drop is induced by oscillating piston heads as

described earlier, the convective part must be homoge-

neous in A2. This realization will become important in
comparing the pressure driven method to the boundary

driven method later on.

Returning now to the piston driven configuration,

the power can be found by taking the scalar or dot

product of the velocity vector with the equation of

motion and then integrating the result over the entire

fluid region. This tells us that the energy required to

drive the fluid is equal to the kinetic energy plus the

frictional heat dissipated by the system. This is only the

power required to move the fluid, and it does not ac-

count the inertia of the piston itself. For the pressure

driven case we have

Power ¼ DP
L

Z h

0

Vx dy

The time-averaged power, Power, over one complete

cycle is

Power ¼ 2R
DePP
L

Z h

0

bVVx dy

 !

or

Power ¼ lA2x2

8h
R

bWW 3 e
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bWW� �
2� bWW� �
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264
375

Because the geometry is two-dimensional and infinite in

extent, the time-averaged power calculated is essentially

a power per area of fluid. The dimensionless time-aver-

aged power becomes

Power

lhx2
¼ 1

8

A2

h2
R

bWW 3 e
bWW � e�

bWW� �
ð2� bWW ÞebWW þ ð2� bWW Þe�bWW � 4

264
375 ð4Þ

Note from the above equations that the time-averaged

power is also a quadratic function of the pressure in

much the same way as the convective part of the mass

transfer.

Moving on to the case of periodic flow induced by the

oscillation of the walls we see that the power and mass

transfer for this case are obtained in a manner similar to

the pressure driven case. In this configuration, the walls

of the channel oscillate in phase as Vwall ¼ ð1=2Þ�
Ax cosðxtÞ. Once again assuming the fluid to be in-

compressible, Newtonian, with a kinematic viscosity m,
and the flow to be laminar,

eVVx ¼
1

4
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e
eWW y� þ e�

eWW e�eWW y�

1þ e�eWW
" #

ð5Þ
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for the boundary driven system. The velocity and con-

centration are related to eVVx and ĉc as before. Again, ex-
pressing the velocity and concentration as

eVVx ¼
1

4
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�
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1
4
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�bWW y�

�
where the b’s and the g’s can be determined by inspec-
tion from Eqs. (5) and (6) respectively, the mass transfer

in dimensionless form becomes
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The power required to drive a boundary driven system is

once more the sum of the kinetic energy and the fric-

tional heat dissipated by it. This is equal to the product

of the velocity and the shear stress at the boundaries,

and is therefore

Power ¼ �2lVx
oVx
oy

����
y¼0

After taking the time average over one cycle, the total

dimensionless power over a cycle is then

Power

lhx2
¼ 1

4

A2

h2
R

bWW e�
bWW � 1

� �
1þ e�bWW

264
375 ð7Þ

Notice that here too, the convective part of the mass

transfer and the time-averaged power are both homo-

geneous in the square of the amplitude of the wall dis-

placement.

3. A comparison of the oscillatory methods and some

results

Fig. 1 shows the convective mass transfer increasing

with Womersley number for each configuration and is a

result that is qualitatively similar to that obtained by

Harris and Goren [1]. Note that the comparison is made

for the same value of A where A represents the peak-

to-peak amplitude of the piston head in the one case and

the peak-to-peak displacement of the channel walls in

the other. We see that the convective mass transfer of a

single species for both methods under the same condi-

tions and given parameters is greater for the pressure

driven method for all Womersley numbers than the

boundary driven method. This is conceivably due to the

Fig. 1. Convective mass transfer of helium in a nitrogen carrier for a pressure driven and boundary driven configuration, Sc ¼ 0:19

and A=h ¼ 10.
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fact that in a boundary driven configuration, a large

fraction of the mass transfer takes place in a small region

near the surfaces of the plates where most of the fluid is

moving. However, for the pressure driven method, more

fluid moves between the two plates due to the imposed

pressure drop which gives rise to a larger region for mass

transfer to take place. As more fluid moves, the draw-

back of the pressure driven case is that more power is

required to drive it than a boundary driven configura-

tion. The ratio of convective mass transfer to power

required for each method therefore gives a reasonable

comparison between both systems; the ratio being inde-

pendent of amplitude in both the pressure and boundary

driven cases. This is important because the value of the

amplitude of the piston stroke for the pressure driven

case is not necessarily the amplitude of the boundary

displacement in the boundary driven case. By eliminat-

ing the amplitude in the ratio of convective mass transfer

to power, the problem of dealing with two different am-

plitudes is no longer an issue. As seen in Fig. 2(a), it was

found that the values for this ratio for all Womersley

numbers are identical in both cases. This shows that there

must be a direct relationship between the pressure driven

and boundary driven configurations. This can be further

demonstrated by a moving frame calculation for the

boundary driven method.

By making a simple frame change calculation, we can

see that the moving boundary case is similar to a pres-

sure driven system with a pressure drop of

DP
L

¼ 1

2
Ax2 cosðxtÞ

which is once again dependent on the amplitude of os-

cillation imposed upon the system. One can imagine

sitting on the moving plate and observing the fluid os-

cillating back and forth. Since the observer cannot de-

termine that the plate is moving, the observer would

assume that only a periodic pressure gradient could be

causing the fluid to oscillate and this time-dependent

‘‘pressure gradient’’ is observed in the equation of mo-

tion for the moving frame. As the power required to

drive the system would be the same regardless of the

reference point of either observer; the ratio of convective

mass transfer to power will be the same for the fixed and

moving frame since it is exactly the same system.

Although it may seem surprising that periodic flow

driven by an oscillating piston and periodic flow in a

boundary driven configuration will give exactly the same

convective mass transfer to power ratio, this is also true

for any generalized oscillating pressure drop that can be

written in the form of Eq. (3).

Next we consider the case where the diffusive mass

transfer and the convective mass transfer are both taken

into account in the calculation of the total mass transfer.

This is important at low frequencies as the diffusive mass

transfer, which is independent of the Womersley num-

ber, plays an important part in the total mass transfer

of the system. The ratio of total mass transfer, which is

Fig. 2. (a) The ratio of the convective mass transfer per power for the pressure and boundary driven configurations yields unity, right

ordinate. (b) The total mass transfer of helium in a nitrogen carrier for a pressure driven and boundary driven configuration, Sc ¼ 0:19

and A=h ¼ 10, left ordinate.

A.M. Thomas, R. Narayanan / International Journal of Heat and Mass Transfer 45 (2002) 4057–4062 4061



now the sum of diffusive and convective mass transfer,

to the power applied will therefore be different for var-

ious Womersley numbers as the power increases for in-

creasing Womersley numbers. If the parameters for the

boundary driven and pressure driven cases are the same,

the total mass transfer per power applied for the

boundary driven case will be higher than the pressure

driven case at low Womersley numbers because the

power required to drive a pressure driven system is

higher than a boundary driven system. This is seen in

Fig. 2(b). Of course, the periodic pressure gradient that

will give the same ratio of total mass transfer to power

as the boundary driven case will be the pressure drop

that is derived from the moving frame calculation.

In reality, the power required move the fluid in each

configuration could very well be small in comparison to

the power requirement due to the inertia of the oscil-

lating piston or moving boundaries. The inertia of the

moving parts depends on the density of the materials

used and engineering mechanisms required to institute

the oscillations. It was not included in this work as it

would then be difficult to make a fair comparison be-

tween the two systems. However, from a physical and

fluid dynamical point of view, comparing the mass

transfer of both configurations to the respective power

required to move the fluid make sense. This work shows

that physically, both configurations are indeed similar,

and the same qualitative results are achieved using either

method.

4. Conclusions

It has been shown that if the amplitude of a piston

stroke and the amplitude of boundary displacement are

the same in oscillatory flow then the convective mass

transfer for an imposed oscillating pressure drop is

greater than the corresponding convective mass transfer

in a pulsating boundary system. It has also been con-

clusively shown that the ratio of convective mass

transport to power is the same for both configurations

and is independent of the origin of the pressure drop.

For the total mass transport where the pure molecular

diffusion is included, less power is required in the

boundary driven configuration at smaller Womersley

numbers. At large Womersley numbers, there is little

difference between a pressure and boundary driven

configuration in the total mass transport. These obser-

vations on the fluid mechanics and transport do not take

into account possible end effects or the masses associated

with the moving parts.
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